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Abstract
Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in
the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we
have carried out a numerical study systematically investigating a three-dimensional flapping
rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the
limited existing studies, this work performs a systematic examination on the effects of wing
aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4–32), torsional stiffness
(frequency ratio F = 1.5–10 and infinity) and pivot point (from chord-center to leading edge)
on the dynamics response of a low AR rectangular wing under an initial zero speed flow field
condition. The simulation results show that the symmetry breakdown of the flapping wing
results in a forward/backward motion with a rotational pitching. When the wing reaches its
stable periodic state, the induced pitching frequency is identical to its forced flapping
frequency. However, depending on various kinematic and dynamic system parameters,
(i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a
number of different oscillating frequencies. Furthermore, compared with a one degree of
freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two
DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point,
as well as its pitching axis. In all cases examined here, thrust force and moment generated by a
long span wing is larger than that of a short wing, which is remarkably linked to the strong
reverse von Kármán vortex street formed in the wake of a wing.

Keywords: flapping wing, low aspect ratio, torsional spring

(Some figures may appear in colour only in the online journal)

1. Introduction

Micro air vehicle-motivated aerodynamics in biological flight
has been an important subject in the past decade. Flying
insects and birds, in general, perform remarkable flapping wing
motion to create aerodynamic forces to stay airborne and for
forward and darting flight. Flapping wing flight in natural flyers
is a highly integrated field, which is both of interest to the MAV

community and of importance to comparative morphologists
when they are considering how physics constrains biological
design (Shyy et al 2007).

There have been several series of developments on
flapping wing studies. At the initial stage, research was
focused on the generation of the wing’s thrust force and
propulsion efficiency via a tethered wing under a uniform
incoming constant flow speed, e.g. the wing is limited

1748-3182/14/016008+15$33.00 1 © 2014 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/1748-3182/9/1/016008
mailto:qing.xiao@strath.ac.uk


Bioinspir. Biomim. 9 (2014) 016008 Q Xiao et al

to a forced flapping motion without free movement in a
forward/backward direction. For a comprehensive review of
the research on various aspects of forced flapping wing, the
reader is referred to the review papers Triantafyllou et al
(2000), Liu (2005), Shyy et al (2007) and Liu et al (2010).

The assumption of a tethered flapping wing is obviously
in contradiction to the live animal locomotion, where the thrust
generation and propulsion direction is entirely determined
by the complicated fluid force and the wing body dynamic
interaction (Borazjani and Sotiropoulos 2009, Gazzola et al
2012).

Apart from the aforementioned limitation on tethered
wings, most existing flapping wing study also assumes
that the wing motion is immersed in a non-zero flow
field with a uniform incoming flow velocity or Reynolds
number. However, the examination on the development of
the propulsion and maneuvering mechanism starting from a
zero-initial-velocity has some practical applications, such as
the sudden start process of swimming fish and hovering fliers.
Under the zero-initial-velocity condition, the wing dynamic
response to its flapping motion is also an ideal scenario
for studying the dynamic system instability development and
bifurcation.

In recent years, to understand flapping wing propulsion
under the condition of free flight with a zero-initial-speed,
some work has been devoted to the study of the dynamics
of flapping wing with a lateral degree of freedom (DoF)
(Vandenberghe et al 2004, 2006, Alben and Shelley 2005,
Lu and Liao 2006, Zhang et al 2009 and Hu and Xiao 2013).
In this context, the self-propelled fish swimming and flying
birds with enforced vertical flapping motion is successfully
modeled.

With a geometrically symmetric elliptic foil or a flat plate,
the study on a symmetry-breaking bifurcation of a forced
plunging foil or a plate is systematically examined either based
on the experimental measurements (Vandenberghe et al 2004,
2006) or the numerical simulations (Alben and Shelley 2005,
Lu and Liao 2006, Zhang et al 2009, and Hu and Xiao 2013).
The general observation is that beyond a critical flapping
frequency, Ref, (Ref = ρfac/μ, where f is flapping frequency,
a is flapping amplitude, c is chord length, ρ and μ are density
and viscosity of fluid respectively), the left–right symmetric
flow structure around the foil with an up–down pure plunging
motion will break, generating a net force in lateral direction,
and thus leading to an in-line motion. Various hysteresis
and bifurcations are observed depending on the different
combinations of system kinematic and structural dynamic
parameters, such as the flapping frequency, amplitude, foil
density ratio and foil shape thickness etc. In order to observe
the possible existences of diverse statuses, for example, a
back-and-forth chaotic motion, a unidirectional forward or
backward motion, a low flapping frequency and low density
ratio foil is preferred. Therefore, in the above cited studies,
the flapping frequency and density ratio are relatively low
compared to real flyers, in the range of Refr = 0–80 and density
ratio of 0.2–20 (Alben and Shelley 2005, Zhang et al 2009 and
Hu and Xiao 2013).

More recently, the study on the above mentioned flapping
wing problem is developed one step further by taking into

account the wing system flexibility (Spagnolie et al 2010,
Zhang et al 2010, Kang and Shyy 2013 and Montcastle
and Combes 2013). It is well known that a key feature in
flapping wing flight or natural flyers’ wings is their deformable
structures that endure either a passively or actively variable
shape, owing to their inertial and aerodynamic forces during
flight. The aerodynamics and structural dynamics of such
flapping wings are strongly coupled, which often leads to a
complex fluid–structure interaction (FSI) problem. Therefore,
it is of great importance to answer a central question of how
the three-dimensional and passive change of wing kinematics
due to inherent wing flexibility contributes to the unsteady
aerodynamics and energetics in a flexible flapping wing flight
(Nakata and Liu 2012).

To study the flapping wing system flexible impact on
its propulsion performance, one common method utilized
by some researchers is to introduce a torsional spring at its
flapping pivot point (Spagnolie et al 2010, Zhang et al 2010).
Previous studies by Combes and Daniel (2003a), (2003b) on
the flexure stiffness variation of a hawkmoth and dragonfly
observed that the flexibility decays sharply from the wing
leading edge to the trailing edge and from the root to the tip.
With the observation of high flexibility around the wing root, a
simplified structure dynamic model to mimic the flexible role
of large wings and appendage in the biologic flapping motion
is to use a lumped-sum torsional flexibility model. In a context
of free flying, the wing is free to move in the lateral direction,
and is also able to pitch clockwise and anti-clockwise. The
rotational motion is modeled by an elastic torsion spring acting
on the pivot point (Ishihara et al 2009, Vanella et al 2009,
Nakata and Liu 2012). By introducing these two DoFs both
in the lateral and pitching directions, the biomimetic model is
close to the nature flapping-based animal propulsive motions,
where both the translation and pitching modes are passively
induced.

A systematic numerical and experimental study on an
elliptical wing with a forced heaving motion but passive
pitching about its leading edge was performed by Spagnolie
et al (2010). While the simulation was conducted at a much
lower flapping frequency relative to their experiment (Ref =
105 in experiment), many dynamic characteristics of wings
are supported by their numerical results. Under the conditions
of two mass ratio (M) defined as the mass of wing/mass
of surrounding fluid (M = 10 and 1.0), non-dimensional
flapping amplitude (A/c) of 0.5, dimensionless spring constant
k = 50 000 (torsional spring constant) and shape aspect
ratio (AR) e = b/a (thickness divided by chord length),
increasing flapping Reynolds number (Refr), four flow regimes
are found: (i) an almost left/right symmetric flow without
lateral movement; (ii) an improved lateral motion with adding a
torsional spring than without it (an increased net force in lateral
direction); (iii) a deteriorated lateral performance relative to
its rigid counterpart; (iv) a bi-stable status, hysteretic regime
in which the flapping wing can move horizontally in either
directions. Compared to a 1-DoF flapping wing in lateral
free movement only, one significant finding is that a wing
with 2-DoF including free-rotating could activate its lateral
motion at a lower flapping frequency, clearly indicating that
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Figure 1. Sketch of the simulation model.

the system flexibility, represented by a pivot point torsional
spring, is beneficial to the lateral thrust generation. In addition,
the maximum lateral velocity is observed when the wing
flaps at a frequency around system resonance frequency. The
examination of the wing shape AR (e) varying from 0.1 to 1.0
also revealed a transition from coherent to chaotic motion and
then a return to coherent motion when e = 1.0, where the wing
becomes a circular cylinder.

The study addressing the role of the foil’s stiffness has also
been pursued by Zhang et al (2010) recently. Using a multi-
block lattice Boltzmann method (LBM), a so-called flexible
plate is modeled by a rigid plate with a torsional spring acting
on the pivot point at the leading edge of the plate. They found
that the dynamics response of foil presented a non-periodic
status, a periodic forward status and periodic backward status
by varying various foil kinematic and structure parameters.
The exact boundaries between the above three regimes relied
on the flapping amplitude as well as the wing linear density
ratio (D) as well as frequency ratio (F), defined as the system
natural frequency to the forced flapping frequency.

Except for the aforementioned two papers on 2-DoF
flapping wings (Spagnolie et al 2010, Zhang et al 2010) no
relevant research has been performed on a three-dimensional
wing with relatively low ARs, i.e. AR � 4.0 (AR is defined as
span/chord length). Though a large AR assumption is valid for
some animals with large fins, wings and appendages such as
the wings of the tree sparrow, soaring birds and bumblebee, low
AR fins/wings do exist, especially for fish pectorals. Previous
studies on a low AR tethered wing found that the kinematic
features of large ARs may be distinguished from that of low
AR wings in terms of thrust and efficiency. The wake vortex
topology also presented a remarkable three-dimensional effect
which is strongly linked to the wing kinematic performance
(Blondeaux et al 2005a, 2005b, Dong et al 2006). The
question of whether the flow phenomena observed from a
two-dimensional wing is applicable to a three-dimensional
wing under a self-propelled 2-DoF condition is still open for
investigation, and this paper provides new findings in this
particular area.

In the present numerical study, we perform a
comprehensive investigation on the dynamics response of a
three-dimensional flapping wing with 2-DoF in lateral and
rotational direction under a zero-initial-velocity condition. Our
attention is mainly focused on the effect of wing ARs, flapping

frequency (Refr), system torsional stiffness (represented by
frequency ratio F), density ratio (denoted as σ , and defined
as density of wing/density of surrounding fluid) and pitch-
bias (x/c) on the development of system symmetry breakdown
and the induced propulsion force, efficiency and related wake
structure. The outline of the rest of the paper is as follows.
We begin by describing the problem with relevant parameters
that control the system kinematic and dynamics features along
with the numerical approaches in section 2. In this section
we also demonstrate the validity of the developed numerical
methods in computing such flows. In section 3, a systematic
presentation on the simulating results is included. We start with
the examination on how the lateral and pitching movement of
wing is activated by its vertical flapping motion, followed
by a discussion on the results in the fully developed stable
state. Distinguishing from the previous work, our particular
interest is centered on the three-dimensional and pitch–
pivot-point influence by comparison of the two-dimensional
(AR = ∞) and three-dimensional (AR � 4) wing data and
bias pitching axis (x/c �= 0) to bring out the difference between
them.

2. Problem description and computational
approach

2.1. The problem and numerical method

In this study, simulations are carried out for a three-
dimensional rectangular wing (figure 1) under a forced
plunging motion while with free motion in the lateral (x)
and rotational (θ ) direction. The wing has an elliptical cross-
section and the ratio of thickness to chord length is 0.1, with
the cross-sectional area (Ac) of 0.025 πc2. The fluid motion
is governed by a three-dimensional incompressible continuity
and momentum equations:

∇ · u = 0 (1)

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + μ

ρ
∇2u (2)

where u = (u, v, w) is the fluid velocity, p is the pressure, μ

the fluid viscosity and ρ is the fluid density.
A specified sinusoidal plunging motion is imposed on the

wing, which is defined as

yb = h sin(2π f t) (3)
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where h is the flapping amplitude and f is the flapping
frequency.

With two DoFs in the lateral and rotational directions, the
wing movement in these two directions is solely determined
by the fluid–motion coupling between the surrounded fluid
and wing. The induced wing lateral motion in x direction is
determined by Newton’s second law as

mb
dub

dt
= Fx (4)

where ub is the wing velocity in x direction, Fx is the x
direction component of overall fluid force integrated around
wing surface. mb is the mass of wing (mb = SAcρb, where S is
the wing span-wise distance). For a two-dimensional wing, S
is taken as one unit.

Induced wing rotational motion in θ direction is governed
by a rotational momentum equation as based on a torsional
spring assumption:

I
d2θ

dt2
+ kθ = Mz (5)

where Mz is the fluid moment imposed on the wing, θ is the
pitching angle, k is the spring stiffness, and I is the inertia
moment of wing.

To determine the wing lateral location and velocity,
an explicit time marching scheme is used to discretize
equation (4) as

ub
t = Ft−�t

x

mb
�t + ub

t−�t (6)

where ub
t and ub

t−�t are the velocities at two subsequent
instantaneous time of (t) and (t−�t), and �t is the time step.
The exact wing location is obtained by integrating equation (6)
once.

The pitching angle (θ ) is the solution of equation (5),
where a fourth-order Runge–Kutta method is used:

θ̇tn+1 = θ̇tn + �t

6
· (K1 + K2 + 2K3 + K4)

K1 = Mz

I
− k

I
· θtn

K2 = Mz

I
− k

I
·
(

θtn + �t

2
· θ̇tn

)

K3 = Mz

I
− k

I
·
(

θtn + �t

2
· θ̇tn + (�t)2

2
· K1

)

K4 = Mz

I
− k

I
·
(

θtn + �t · θ̇tn + (�t)2

2
· K2

)
(7)

where n represents the nth time step and θtn+1
and θtn are the

pitching angles at the instantaneous time of (n + 1)�t and
n�t.

Flow field around the wing is simulated using the
commercial CFD package FLUENT version 13.0, with an
unsteady incompressible solver and the second-order upwind
spatial discretization. The flow field is assumed to be laminar
as the induced velocity between the wing and fluid is small
with Reu ranging from 0–1000 approximately. The first-
order discretization is used for the unsteady time marching,
which is limited by the DYNAMIC MESH function imbedded
in FLUENT (ANSYS 2010). To avoid any inaccuracy that

could be generated by the mesh deforming or re-meshing,
the entire mesh domain is handled as a rigid moving
body without relative mesh motion between the wing and
the surrounding cells. A macro dealing with rigid motion
(Define_CG_MOTION) written in User_Defined_Function is
implemented on the entire domain.

At each time step, the simulation starts with attaining
the flow field around wing by solving unsteady continuity and
momentum equations associated with the velocity and pressure
Dirichlet and Neumann boundary conditions. By obtaining the
flow data, the integrated wing surface forces (Fx) and moment
(Mz) in equations (4) and (5) are available. The dynamic
response of wing is therefore obtained by solving equations
(6) and (7) where the system structural parameters, such as the
wing mass, stiffness are taken into account.

2.2. Parameter definition

The main kinematics and dynamic parameters are described
in the following section. Wing AR is defined as the span-
wise length (S, wing tip to tip distance) divided by chord
length (c)

AR = S

c
, (8)

where the chord length (c) is a constant.
To quantify the heaving frequency, the flapping frequency

Reynolds number is defined as

Refr = ρh f c

μ
, (9)

Obviously, Refr is an indication of the prescribed plunging
frequency as the plunging amplitude (h) is fixed as 0.5c.

Two non-dimensional parameters are relevant to the
system dynamics response, i.e. density ratio (σ ) and frequency
ratio (F), they are defined as

σ = ρb

ρ
, (10)

and

F = fn

f
, (11)

where ρb and ρ are the density of wing body and fluid
surrounded it, respectively. fn is the wing natural frequency,
and defined as

fn = 1

2π

√
k

I
, (12)

where k and I are the stiffness of system and moment of inertia
of the wing, respectively. The non-dimensional density ratio
(σ ) indicates the wing system inertia, and the frequency ratio
(F) represents the rotational stiffness.

The overall parameters covered in the present study are
summarized in table 1. Both the two-dimensional foil (AR =
∞) and the three-dimensional wing with low AR (AR � 4.0)
are investigated. The frequency ratio (F) is mainly selected
between 1.5 to 10.0 to control the wing dynamic response in
rotational direction. Obviously, wing with F equal to infinity is
the indication of one DoF in lateral (x) direction. The density
ratio examined here is in-between 4.0 to 32. As compared to
the relevant mass ratios for live flying birds or insects, such
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Figure 2. Grid distributions over 3D wing. (a) Mesh around wing surface, a structured BL mesh is used near the wing. The blue circle
represents the boundary of BL. (b) Overall mesh distribution. Mesh size progressively increases away from wing.

as the wings of hawkmoths, bumblebees and fruitflies, which
are reported to be of 2.0 × 103, 2.1 × 103 and 1.1 × 103,
respectively (Willmott and Ellington 1997a, 1997b, Combes
and Daniel 2003a, 2003b, Buchwarld and Dudley 2010), the
mass ratios studied here are very small.

In addition, the flapping Reynolds number Refr defined in
equation (9), for the 3D wing in the present study, is fixed at
80, which is comparatively small as compared to the normal
flapping wing cases in biological flights. However, since the
main objective of the present study aims at unveiling the three-
dimensional mechanisms in free-moving 3D wings with a
specific focus on the phenomenon ‘symmetry breakdown’ and
its subsequent development into stable states, the parameters
selected are consistent with other relevant papers on free-
moving two-dimensional foils by Alben and Shelley (2005)
and a flat plate by Zhang et al (2010) with Refr = 0–50 and
Refr = 0–80, respectively.

The wing pitching axis is initially set at the center of
chord (x/c = 0 in figure 1) to hold the wing left/right and
clockwise/counter clockwise symmetry before the bifurcation
starts. This is different from the real flyers, where the rotational
axis is normally at the leading edge (Sane and Dickinson
2002). As we will show later, the stiffness of wing, represented
by frequency ratio F, on the induced lateral speed (Reu) is
remarkably affected by the pivot point. Thus, a systematic
study is performed on the pitching axis effect by varying the
pivot point from leading edge (x/c = 0.5) to center-chord
(x/c = 0).

The computed data are summarized with the induced
lateral non-dimensional velocity (Reu) and the pitching angle
(θ rms) based on its root mean square value (rms), which is
defined as

Reu = ρc|ub|
μ

, (13)

and

θrms =
√∑i

r=1 (θ tr − θavg)2

i
. (14)

The i in equation (14) represents the iteration time step,
θ tr is the pitching angle at the rst instantaneous time, θ avg is the
averaged pitching angle. As we will see in section 3, the wing
eventually approaches a periodic pitch motion with a time–
mean pitch angle always of zero, therefore, a rms expression
of pitch angle is adopted herein.

The non-dimensional lateral and vertical overall force
coefficient CFx and CFy are defined as

CFx = Fx

0.5ρ(h f )2cL
, CFy = Fy

0.5ρ(h f )2cL
. (15)

The pressure force coefficient CFPx
is represented by

CFPx
= FPx

0.5ρ(h f )2cL
. (16)

The propulsion efficiency η is defined as

η =
∫ t+T

t ub(t)FPx dt∫ t+T
t vb(t)Fy dt

(17)

where Fx and Fy are the force components in lateral and vertical
direction, FPx is pressure force in the lateral direction, and L is
a characteristic length assuming one unit herein.

2.3. Sensitivity study and validation

The mesh distribution over the 3D wing is shown in figure 2.
A structured boundary layer (BL) mesh is used for the flow
near wing surface, with 25 layers in total within BL. For the
grid outside the BL area, a triangular mesh is used.

A grid and time-step independence test is conducted for
a 3D wing with AR of 1.5 under Refr = 60, F = ∞ and
h/c = 0.5 conditions. Details of overall volume and surface
mesh numbers and time step are listed in table 2 along with the
computed approach velocity Ub/fc. The instantaneous CFx on
the medium and fine grids (not shown here) indicate that the
results on the medium grid with a time step of dt = T/200
almost coincide with those on the fine grid and dt = T/400.
Considering an increased computing time as listed in table 2,
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Table 1. Various parameters investigated in the present study.

Density Plunging Flapping Re Frequency Aspect ratio Pitching axis
ratio σ amplitude (h/c) (Refr) ratio (F) ratio (AR) position (x/c)

4–10, 16 0.5 80 1.5–10 1.0,1.5, 2.0,3.0, 4.0 0
4–10, 16 0.5 80 1.5–10 ∞ 0, 0.1, 0.2, 0.3, 0.4, 0.5
4, 20, 32 0.5 20, 32, 45, 60, 80 ∞ 1.0,1.5, 2.0,4.0, 6.0, ∞ –

F
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Figure 3. Comparison with Zhang et al (2010) with 2-DoF flat plate.
(a) Induced non-dimensional lateral velocity. (b) Induced pitching
angle. (c) Variation of induced instantaneous pitching angle at
F = 1.05.

the time step dt = T/200 and medium mesh is used in the
present simulation.

The numerical methodology developed for solving the
problems with unsteady forced undulating swimming fish or
two-dimensional flapping foil has been extensively validated
in our previous publication (Hu et al 2011 and Xiao et al 2011).
To further validate the strategy utilized to handle the system

dynamic response (FSI) associated with the self-propelled
feature, a validation on a self-propelled flat plate investigated
by Zhang et al (2010) is performed. Given the pre-specified
plunging motion with a flapping Refr = 40, amplitude h/c =
0.5 and mass ratio σ l = 2.0, the computed propulsion velocity
(Reu) and pitching angle (θ ) variation with frequency ratio
are compared in figure 3 with data from Zhang et al (2010).
Our results present a general good agreement with theirs by
capturing the peak Reu and sharp varying of Reu and θ versus
F. At large F, we have discrepancy as compared to Zhang
et al (2010), this might be caused by the different numerical
methods used. A multi-block LBM was applied by Zhang et al
(2010), while our method is based on a finite volume method.
In addition, due to the limitation of the present method, we
could not get convergent solution for F � 1.0. However,
the comparison on the time-dependent instantaneous pitching
angle at F = 1.05 presents an excellent agreement between two
results in terms of the amplitude and phase angle. Apart from
this test case, we also simulated a two-dimensional flapping
elliptic foil which was studied previously by Alben and Shelley
(2005). The comparison between our results and theirs is
published in our recent paper (Hu and Xiao 2013).

3. Results and discussions

In this section, we start presenting our results on a symmetry
breakdown which leads to the wing motion in both rotational
and lateral direction in subsection 3.1. The results on the fully
developed stable state are discussed in subsections 3.2, 3.3
and 3.4. Section 3.2 focuses on our findings of a complicated
flow status map obtained by subjecting the wing to a wide
range of kinematic and system dynamic parameters. This
will be followed by a detailed parametric study on the wing
AR, pivot point, density and frequency ratio influence on
the flow structure, the system dynamics response in terms
of the instantaneous, final approaching propulsion velocity,
rotational angle, thrust force and efficiency.

3.1. Symmetry breakdown

The observations on the evolution of wing up and down
heaving motion show that, given the forced Refr = 80, the
wing under various grouping of ARs, density ratios, frequency
ratios and pitching bias distance could eventually reach a
stable motion, a combination of an either forward or backward
motion with a periodic pitching motion. The evolution of
instantaneous Reu and θ are shown in figures 4 and 5 for
two-dimensional foil (AR = ∞) and three-dimensional wing
(AR = 2). It is clear that the wing starts its lateral movement
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(a) Instantaneous Reu and θ

  (b-i) t1=0.9T            (b-j) t2=2.3T          (b-k) t3=8.8T 

Figure 4. Evolution of symmetry breakdown (σ = 8.0, Refr = 80, F = 2.0, AR = ∞). (a) Instantaneous Reu and θ . z/S = 0 (b-i) t1 = 0.9T.
(b-j) t2 = 4.9T. (b-k) t3 = 9.9T. z/S = 0.25 (c-i) t1 = 0.9T. (c-j) t2 = 4.9T. (c-k) t3 = 9.9T. z/S = 0.5 (d-i) t1 = 0.9T (d-j) t2 = 4.9T (d-k) t3 =
9.9T.

(a) Instantaneous Reu and  θ

z/S=0        (b-i) t1=0.9T         (b-j) t2=4.9T        (b-k) t3=9.9T 

z/S=0.25        (c-i) t1=0.9T          (c-j) t2=4.9T        (c-k) t3=9.9T 

z/S=0.5         (d-i)  t1=0.9T        (d-j) t2=4.9T         (d-k) t3=9.9T 

Figure 5. Evolution of symmetry breakdown (σ = 8.0, Refr = 80, F = 2.0, AR = 2.0). (The contour legend is same as in figure 4.)

Table 2. Summary on mesh size, time step and computing time.

Overall Nodes Nodes Time Simulation time
Mesh cells (wing surface) (span-wise) step (eight processors) Ub/fc

AR1.5-C 185 3675 200 80 T/200 59 h 4.37
AR1.5-M 278 2250 300 80 T/200 75 h 3.95
AR1.5-F 632 7830 400 120 T/200 153 h 3.91
AR1.5-MST 278 2250 300 80 T/150 62 h 4.24
AR1.5-MLT 278 2250 300 80 T/400 140 h 3.96

C: coarse mesh; M: medium mesh; F: fine mesh; MST: medium mesh and small time step; MLT:
medium mesh and large time step.
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Figure 6. Boundary of various flow status (h/c = 0.5, Refr = 80). (a) Density–frequency ratio-Reu three-dimensional view (AR = ∞). (b)
Density-frequency ratio plane view (AR = ∞). (c) Density–frequency ratio-Reu three-dimensional view (AR = 2.0). (d) Density-frequency
ratio plane view (AR = 2.0). Mode A represents the state with multiple peak frequency obtained by FFT analysis on Reu-time curve. Mode
B-1 refers to the state with one dominant frequency which is equal to the forced plunging frequency. Mode B-2 depicts the state with one
peak frequency which is double the forced plunging frequency.

almost at the same time as its rotational motion, indicating
that once the pitching motion is activated, left/right symmetry
breaks down and thus causes the lateral motion. A three-
dimensional wing takes longer developing time than a two-
dimensional foil to reach its stable state.

To better understand the wing dynamic system symmetry
breakdown, the vorticity contours at three typical time instants,
i.e. symmetry, asymmetry development and fully developed
state (denoted as t1, t2 and t3, respectively) are plotted in
figures 4 and 5. Clearly seen from the plots, at time t1, the
flow structure has left/right symmetry, thus no movement of
the wing in lateral and rotational directixons (figures 4(b-i),
5(b-i)–(d-i)). Once the wing flaps more cycles to reach time
t2, the pitching motion activates, as shown in figures 4(b-j)
and 5(b-j)–(d-j), with an asymmetry vortex structure around
the wing. At the fully developed state (t3), a thrust-generated
vortex wake is observed from figures 4(b-k) and 5(b-k)–(d-k).
Comparison of figure 5(i) with (j) and (k) on the vortex
structure around the wing at different span (z), reveals that
the flow has a profound three-dimensional feature due to the
low AR of the wing (AR = 2). A comparison between the 3D
wing symmetry plane vorticity contour plot with a 2D wing in
figures 4 and 5 also indicates a relatively weak vortex strength

associated with a 3D wing, implying a weaker propulsion
feature wake structure which is the key reason leading to a
smaller Reu and θ as compared to their 2D counterparts, which
is shown later in the paper.

3.2. Various flow status at a fully developed state

Figures 6(a)–(d) are the charts (σ–F–Reu and σ–F plane)
summarizing the different flow status obtained with a 2D and
3D wing response (AR = 2.0), respectively. Each point in the
chart represents simulated data obtained after a periodic stable
status has been reached. For completeness, some points at the
left margin in figures 6(b) and (d) represent the status where a
convergent solution is not reachable. The corresponding time
history on the instantaneous Reu and θ , their power spectral
density (PSD) distribution, and vorticity topology contour are
shown in figures 7 and 8 with a range of frequency ratios
varying from F = 3.0 to F = 8.0.

Our general observations are that the wing response
in rotational direction (θ ) to the forced flapping motion is
generally more regular than the response in lateral direction.
The fast Fourier transformation (FFT) analysis on the
instantaneous θ plot, shown in figures 7 and 8, dictate that one
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Figure 7. Evolution of instantaneous Refr and θ , their PSD, vorticity contour, and forces (σ = 8.0, h/c = 0.5, Refr = 80 and AR = ∞).
For vorticity contour, solid lines are positive values and dashed lines are negative values. (a) Mode A (F = 3.0). (b) Mode B-1 (F = 6.0).
(c) Mode B-2 (F = 8.0). (d) Instantaneous thrust and lift forces.

dominant frequency, i.e., a single spike is always observed for
all cases studied, which is identical to the flapping frequency
(i.e. Fin/ f = 1, where Fin is the induced lateral motion
frequency and f is the prescribed plunging frequency). The
FFT is calculated from 10th period to 30th period. For some

2D wing at a low frequency ratio where F is less than 4.5, a
second spike or more is observable. This is consistent with our
system dynamic feature where the stiffness is imposed merely
in the rotational direction to manipulate the periodic pitching
motion, as shown in equation (5). In contrast, the FFT on
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Figure 8. Evolution of instantaneous Refr and θ , their PSD and vorticity contour (σ = 8.0, h = 0.5, Refr = 80 and AR = 2.0). For vorticity
contour, solid lines are positive values and dashed lines are negative values. (a) Mode A (F = 3.0). (b) Mode B-2 (F = 8). (c) Instantaneous
thrust and lift forces.

the instantaneous Reu, history, which represents the dynamic
response in lateral direction, reveal a multiple-spike frequency
spectral distribution, where the dominant spike does not
always correspond to the forced flapping frequency. Instead,
it depends on a wide range of density and frequency ratio
investigated. In the following, we classify such complicated
flow status based on the FFT analysis on the instantaneous
induced Reu three ways.

• Frequency ratio: with an increase in frequency ratio
(F) or wing stiffness, the PSD for Reu shows a gradual
transition from a multiple-spike (two–three modes) state
to the single spike frequency state (one mode). We denote
the state exhibiting multiple-spike frequency as mode A,
and the state with single spike frequency as mode B. Two
subdivisions as mode B-1 and B-2 are further defined
depending on whether the Fin/ f is equal to 1.0 or 2.0.
It is found that the boundary between mode A and B is

affected by the system dynamics parameters, i.e. density
and frequency ratio. Given a fixed density ratio, the wing
with large F presents a more harmonic distribution in
terms of Reu versus time plot, indicating the existence
of one dominant frequency. This is also well reinforced
by the instantaneous thrust and lift forces (CFx and CFy)
plots in figures 7(d) and 8(c). Clearly seen, the lift
force presents a rather regular dominant frequency, which
is irrelevant to the stiffness (F). However, thrust force
displays an increased multiple mode with small stiffness,
which is believed to cause the multiple frequency in Reu.
From this point, the present results clearly reveal that the
torsional stiffness, represented by the spring added at pivot
point, definitely plays a role in the overall wing dynamic
response both in x and θ direction. With F approaching
infinity, the pitching motion is entirely eliminated, the
wing becomes a rigid body with 1-DoF in x direction, and
thus it is expected to be more stable and regular under the
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Figure 9. Vortex topology (Q contour) for 3D wing at different frequency ratios, with magnitude of iso-surfaces as 0.0002 ((σ = 8.0, h =
0.5, Refr = 80 and AR = 2.0)). (a) F = 3.0. (b) F = 8.0.

external forced flapping motion. Indeed, we found that
only one peak frequency exists in its PSD.

• Aspect ratio: the wing AR influences the boundary
separating mode A and B slightly. Decreasing AR leads
to the boundary moving to higher F. Apart from that,
AR also changes the mode transition and the ratio of
the induced Reu frequency relative to flapping frequency
(Fin/ f ). Comparing 2D wing in figures 6(a) and (b) with
3D wing in 6(c) and (d), it can be seen that an increase in
F causes a 3D wing to transfer from mode A directly to
mode B-2.

• Density ratio: above trends are valid for all density ratios
investigated. However, the exact boundary location is
affected by density ratio (σ ). In fact, decreasing density
ratio causes the flow regime transition from mode A to B
at a relatively large frequency ratio (F).

Along with the key information provided by FFT analysis
above, the typical vorticity topology contours at a given density
ratio σ = 8.0 are shown in figures 7 and 8 to represent the
relevant wake vorticity structure variation with a gradually
increasing F from mode A to B-1 to B-2. All vorticity plots
shown in the figures are taken at the instantaneous time
at which the wing pitches to the maximum angle. For a
3D wing, the vorticity contour is taken at wing half span
section. It is seen that the vortical structure resembles the
classic reverse von Kármán vortex street in the wake of a

propulsive body, revealing the existence of a forward moving
state. This behavior is consistent with the experimental and
numerical findings of a 2D foil in the work of previous studies
(Vandenberghe et al 2004, 2006, Alben and Shelley 2005, Lu
and Liao 2006, Zhang et al 2009). However, some differences
do exist. For a small frequency ratio (F), a less stiff wing
with the presence of mode A, the pitching angle is relatively
larger as compared to that of large F, where mode B appears,
the vortex shedding street becomes much wider, and more
vortices shed within one cycle, which leads to the co-existing
of various PSD modes in the wake as shown previously.
Increasing F causes the increasing of system stiffness and thus
the wing pitching at a smaller angle. As a consequence, the
wake becomes narrower and more regular, and fewer vortices
shed in one cycle as compared to the cases with small F.
Though the above observation is generally true for both 2D
and 3D wings, the detailed difference can be noticed from
the 3D wing wake topology plotted using a Q-criterion theory
(Hunt et al 1988) as shown in figure 9. At a low AR, like AR =
2.0, a vortex ring forms via the combination of two tip vortices
generating at the two ends of wing-span direction.

3.3. Aspect ratio, frequency ratio (flexibility) and pivot-point
effect

In this section, our attention is paid to the impact of variables
AR and F and pitching axis on the development of Reu, θ

11



Bioinspir. Biomim. 9 (2014) 016008 Q Xiao et al

F

R
e u

0 2 4 6 8 10
-100

100

300

500

700

900
AR=∞
AR=4.0
AR=2.0
AR=1.5
AR=1.0
(AR,F)

(∞, ∞)

(4.0, ∞)
(2.0, ∞)

(1.0, ∞)

(1.5, ∞)

(a) 

F

θ rm
s(

o
)

0 2 4 6 8 10

0

10

20

30

40

AR=∞
AR=4.0
AR=2.0
AR=1.5
AR=1.0

(b) 

Figure 10. Final approached time-mean Reu and θ rms (σ = 8.0,
Refr = 80, x/c = 0). (a) Induced non-dimensional lateral velocity.
(b) Induced pitching angle.

and their quasi-periodic values. Figures 10(a) and (b) show
the induced time-averaged lateral velocity (Reu) and the rms
pitching angle (θ rms) variation with frequency ratio (F) at
various ARs. At a predefined value of AR with 1-DoF in
x-direction (F = ∞), the results are compared with the 2-DoF
situations in figure 10(a).

For a moderate AR (ranging from 2.0 to 4.0) and a large F
(F > 4.0), the differences in Reu and θ rms are small. However,
it is observed that a 2D wing (AR = ∞) obviously has
larger propulsion velocity and pitching angle than those in
a 3D wing. The impact of AR becomes more evident when
the 3D wing becomes very short at AR = 1.0, where both
lateral and rotational motions are remarkably independent on
the frequency ratio F, different from the trend observed for
AR � 1.5.

As for the stiffness effect, generally, a stiffer wing with
larger frequency ratio tends to have a decreased pitching
angle. Within the F ranging from 1.5 to 3.0, the pitching
angle decays rapidly, and approaches almost zero around
F = 8.0. This is consistent with the fundamental principles
of frequency ratio. In fact, the case with F = 1.0 corresponds
to a special condition where the flapping frequency is exactly
equal to the wing’s natural frequency. Recent studies by
Kang et al (2011), Ramananarivo et al (2011) etc on the
biological flights associated with insects/birds, reported that
the maximum propulsive force is obtained when the wing flaps
near its resonance frequency, whereas the optimal propulsive
efficiency is reachable when the wing flaps at about half
of its natural frequency. This implies that the propulsion

performance of a flapping wing very likely demonstrates its
apparent dependence on the forced flapping frequency, in
particular at a low F, i.e. less than 4.0 as illustrated in figure 10,
where the flexibility plays a significant role. Even though the
current setup is away from the range of biological wings,
such as some parameters’ space setting and the utilization of
a lumped elasticity of wing represented by an elastic spring at
the pivot point, a similar phenomenon to the findings of Kang
et al (2011) and Ramananarivo et al (2011) are observed. This
suggested that the current model could be served as a good
approximation for investigating flexible wing with passive
pitch problems.

One striking finding from figure 10 is that, apart from a
very low AR case with AR = 1.0, the lateral Reu increases
monotonically with frequency ratio of the wing for the rest
of AR examined. This implies that the performance of a wing
with torsional spring is even worse than a wing without spring,
which seems contradictory to the study of Spagnolie et al
(2010) and Zhang et al (2010). To find out the problem, we
performed a series of investigation on the pivot point effect
by varying it from center-chord (x/c = 0) to leading edge
(x/c = 0.5). The results are presented in figure 11 for
2D and 3D wings. Clearly found from the plots, the pivot
point has a very apparent impact on the stiffness influence
for wing propulsion. Our two-dimensional results plotted in
figures 11(a) and (c) clearly show that below a threshold
pitching axis, x/c = 0.3 here, a wing without torsional spring
achieves a better propulsion performance than a wing with
spring. Beyond this value, Reu versus F curve presents a
non-monotonical trend. At a low F less than 2.0, where
the wing is very flexible in rotational direction, the wing
propulsion velocity increases sharply with F, exhibiting a
flexible detrimental effect. Once F is larger than 2.0, Reu

decreases with F, thus indicating a better performance of a
flexible wing than a rigid wing. The induced pitching angles
decreases with the increase of F. Our results for x/c > 0.3
are remarkably similar to all relevant flexible wing flapping
observations where the pitching axis is fixed at the leading
edge (Spagnolie et al 2010, Zhang et al 2010). Another notable
feature observed from figure 11 is that such pitching axis
influence decays when the wing becomes more and more stiff
(via increasing F), and is expected to lose its impact eventually
when the wing turns into rigid.

To further demonstrate the above facts from the present
study, the time-mean thrust pressure force (CFPx

) in the lateral
(x) direction and the corresponding propulsion efficiency η

defined in equations (16) and (17) are plotted in figures 12(a)
and (b) with various frequency ratios (F) and ARs. Obviously
seen from the plots, the thrust force decreases monotonically
with F for all ARs examined. The maximum CFPx

reaches at the
minimum frequency ratio at around F = 1.5 studied. However,
an optimal efficiency is obtained around F = 2.0 and F =
3.0 for 2D foil and 3D wing, respectively. This definitely
reinforces the optimal propulsion mechanism in the field of
biology as revealed by relevant publications cited above (Kang
et al 2011, Ramananarivo et al 2011). Refer to the flow status
results presented in section 3.2, we can conclude that the most
desirable and efficient propulsion mode is mode A. Compared
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Figure 11. Effect of pitching axis (x/c = 0 represents the wing pitching at its center-chord). (a) Reu versus F with AR = ∞. (b) Reu versus F
with AR = 2.0. (c) θ rms versus F with AR = ∞. (d) θ rms versus F with AR = 2.0.
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Figure 12. Frequency ratio (F) effect on the horizontal thrust force
and efficiency (σ = 8.0, Refr = 80). (a) Thrust force coefficient.
(b) Efficiency.

to live fliers, the relative low efficiency shown in figure 12(b)
might be due to the discrepancy in the selecting of problem
parameters, such as flapping frequency (Refr) and density ratio
(σ ), which are different from the real animals as we mentioned
in section 2.

3.4. Density ratio effect

The results for density ratio (σ ) effect on time-mean Reu and
θ are summarized in figures 13(a) and (b) for various ARs and
frequency ratios (F). Generally, the impact of density ratio on
the lateral velocity Reu is smaller than its influence on θ . In
addition, the density ratio impact is influenced by the wing
AR. For a 2D wing under 2-DoF, represented by (∞, ∗) in the
figure, increasing density ratio leads to a slightly enlarged Reu

and a small pitching angle. This trend is also relevant to wing
stiffness (F). Large F implies a much stiffer wing, thus the
density ratio effect is less apparent. This is clearly reflected
by the wing with a (∞, ∞) combination, where the pitching
angle is equal to zero and thus Reu remains a constant as 755.
With a 3D wing, given a density ratio (σ ), again, we found
that large AR has a relatively large propulsive velocity and
rotational angle. For the present problem, i.e. a self-propelled
3D wing with 2-DoF, this finding is especially important, as it
links the system dynamic response to the external fluid force.
In particular, the inertial force influence on the system stability
via the density ratio. With a fixed density ratio, the mass of a
small AR wing must be smaller than a wing with large AR.
The small mass represents a system with small inertia, and thus
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Figure 13. Density ratio effect on the induced lateral velocity and
pitching angle (Refr = 80). (a) Averaged induced non-dimensional
lateral velocity Reu. (b) Induced pitching angle θ .

more sensible to the variation given from the external force or
moment.

The development history of Reu and θ are plotted in
figure 14 for various density ratios at AR = 2.0 and F =
2.0. Obviously seen, due to the larger inertia, the system with
large density ratio presents a small variation both on Reu and
θ . The evolution time to reach the final stable state is also
increased. It should be pointed out that the wings of insects and
birds usually have much larger density ratios on the order of
several thousands (Ramananarivo et al 2011), which compared
to the relatively low density ratios in the present study, may
enhance the stability of the dynamic flight system in terms of
the nonlinear interaction between aerodynamics and inertial
dynamics.

4. Conclusions

A numerical study is carried out to investigate the dynamics
of a three-dimensional low AR wing that flaps up and down
but the pitching and horizontal motions are passively induced.
The wing system stiffness is introduced and modeled by a
torsional spring at the pivot point. The present study aims
to understand the fundamental fluid mechanism utilized by
some live animals using a flapping motion for their thrust/lift
generation and propulsion, which is made possible by the
wings’ inherent flexibility with this simplified model. We
understand the existence of some discrepancies between the
present study and live flying animals in the parametric map as
one of our aims is to investigate this system dynamic response
to the symmetry breakdown (see introduction for details). It is
believed that the results obtained are still vital to elucidate the
flexible wing propulsion mechanism.

The simulations show that the development history of
lateral and rotational motion is similar to the studies of
Spagnolie et al (2010) and Zhang et al (2010) for a two-
dimensional foil and flat plate. In particular, the evolution
follows left/right symmetry, an asymmetry, and eventually
a stable forward or backward movement combined with a
rotational pitching. However, our simulations of a low AR
wing show that a 3D wing takes a longer developing history
for breaking the symmetric flow structure around the wing,
and reaching its final stable state than a 2D wing. Such a three-
dimensional effect that is likely responsible for stabilizing
force generation can also be observed in flying insects and
maneuvering fish that fly or swim at low Reynolds numbers by
flapping their wings or pectoral fins with low ARs as compared
to those of bats and birds.

Analysis of the data within the fully developed flow
regimes shows that the wing always pitches at the same
frequency as forced flapping frequency, irrelevant to the wing’s
torsional stiffness and this is consistent with the study of Zhang
et al (2010), which indicates that the low AR wing edge does
not affect the dynamics of passive pitching in this aspect.
On the other hand, for the lateral motion, both results show
that the induced lateral velocity (Reu) oscillating frequency is
profoundly dependent on the wing torsional stiffness, varying
from multiple frequencies to one dominant frequency with
an increase in the wing’s stiffness (figure 7 in the paper of
Zhang et al (2010)). In addition, apart from mode B-2 where
the Reu frequency is double the flapping frequency found by
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Figure 14. Density ratio effect on the evolution of Reu and θ (Refr = 80, AR = 2.0 and F = 2.0). (a) Induced non-dimensional lateral
velocity Reu. (b) Induced pitching angle θ .
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Zhang et al (2010) for their flat plate, we observed a mode
B-1 state for our 2D wing, in which Reu oscillating frequency
appears to be the same as the flapping frequency. Considering
the different parameters and geometry examined in the two
studies, we can conclude that the dynamic response of such a
flapping wing system is complicated, and very much dependent
on the various system kinematic and structural parameters.

Further studies on the hydrodynamic performance of these
wings in the fully developed state show that the wing AR,
frequency ratio, density ratio and even the pitching axis have
remarkable effects on their propulsion performance. The wings
with large ARs always show large thrust force and thus a large
Reu than those of short spans. The vortex structure around the
wing body shows that this is the result of a stronger reverse von
Kármán vortex street generated in the wake of large ARs wing.
In addition, we found that the stiffness influence on the wing
propulsion is strongly linked to the pitching axis. Introduction
of the pivot point away from chord-center to the leading edge
leads to an improvement of propulsion performance. Further
studies on this aspect would be our near future direction. In
addition, the analysis of thrust force and efficiency relation
with wing torsional stiffness shows that maximum thrust is
generated when the wing flaps at its natural frequency, while
the optimal efficiency is instead obtained if the wing flaps
at half of its natural frequency. This conclusion remarkably
resembles the observations from biological fliers, even though
some parameters in the present study are beyond the range of
that of real animals. Our results also show the predominant
range for torsional stiffness impact on the propulsion of wing
is between frequency ratios of F = 1.0 to 4.0.
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